Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.365
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10582, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719932

RESUMO

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Assuntos
Neoplasias do Colo , Quinases Ciclina-Dependentes , Fluoruracila , Tromboplastina , Regulação para Cima , Humanos , Tromboplastina/metabolismo , Tromboplastina/genética , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Regulação para Cima/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Compostos de Piridínio/farmacologia , Óxidos N-Cíclicos/farmacologia , Indolizinas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 512-519, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660860

RESUMO

OBJECTIVE: To explore the effects and mechanisms of chidamide on the osteogenic differentiation of bone marrow mesenchymal stromal cells (MSC) from myelodysplastic syndromes (MDS). METHODS: MSC were isolated and cultured from bone marrow of MDS patients and healthy donors. CCK-8 assay was used to detect the effects of chidamide on the proliferation of MSC. The effects of chidamide on the activity of histone deacetylase (HDAC) in MSC was measured by a fluorescence assay kit and Western blot. Alkaline phosphatase (ALP) activity was detected on day 3 and calcium nodule formation was observed by Alizarin Red staining on day 21 after osteogenic differentiation. The expression of early and late osteogenic genes was detected on day 7 and day 21, respectively. RT-PCR and Western blot were used to detect the effects of chidamide on mRNA and protein expression of RUNX2 which is the key transcription factor during osteogenesis. RESULTS: As the concentration of chidamide increased, the proliferation of MSC was inhibited. However, at a low concentration (1 µmol/L), chidamide had no significant inhibitory effect on MSC proliferation but significantly inhibited HDAC activity. In MSC from both MDS patients and healthy donors, chidamide (1 µmol/L) significantly increased ALP activity, calcium nodule formation, thereby mRNA expression of osteogenic genes, and restored the reduced osteogenic differentiation ability of MDS-MSC compared to normal MSC. Mechanistic studies showed that the osteogenic-promoting effect of chidamide may be related to the upregulation of RUNX2 . CONCLUSION: Chidamide can inhibit HDAC activity in MSC, upregulate the expression of the osteogenic transcription factor RUNX2, and promote the osteogenic differentiation of MDS-MSC.


Assuntos
Aminopiridinas , Diferenciação Celular , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core , Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Osteogênese , Humanos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Aminopiridinas/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células da Medula Óssea , Benzamidas/farmacologia , Histona Desacetilases/metabolismo , Fosfatase Alcalina/metabolismo
3.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646935

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.


Assuntos
Aminofenóis , Aminopiridinas , Benzodioxóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Furões , Quinolonas , Animais , Feminino , Gravidez , Aminofenóis/uso terapêutico , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Benzodioxóis/farmacologia , Agonistas dos Canais de Cloreto/uso terapêutico , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Combinação de Medicamentos , Mutação , Quinolonas/farmacologia , Quinolonas/uso terapêutico
4.
Expert Opin Drug Metab Toxicol ; 20(4): 225-233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600865

RESUMO

INTRODUCTION: Cyclin-dependent kinase (CDK) 4/6 inhibitors are cornerstones in the treatment of Hormone Receptor (HR) positive and Human Epidermal Growth factor (HER2) negative metastatic breast cancer. Given their widespread use in the metastatic setting and emerging use in the adjuvant setting, studying drug-drug interactions (DDI) of these medications is of utmost importance. AREAS COVERED: This review provides key background information on the CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib. We discuss drug-drug interactions including those with proton pump inhibitors as well as CYP3A substrates, inhibitors, and inducers. We describe the effect of these drugs on membrane transporters and their substrates as well as those drugs that increase risk of CDK4/6 toxicities. Finally, we explore future directions for strategies to minimize drug-drug interactions. EXPERT OPINION: It is crucial to be mindful of medications that may interfere with drug absorption, such as proton pump inhibitors, as well as those that interfere with drug metabolism, such as CYP3A4 inhibitors and inducers. Additionally, special consideration should be given to populations at higher risk for polypharmacy, such as older patients with greater comorbidities. These interactions and patient characteristics should be considered when developing individual treatment plans with CDK4/6 inhibitors.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Interações Medicamentosas , Inibidores de Proteínas Quinases , Humanos , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Inibidores da Bomba de Prótons/administração & dosagem , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/efeitos adversos , Aminopiridinas/administração & dosagem , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacologia , Benzimidazóis/administração & dosagem , Benzimidazóis/farmacologia , Benzimidazóis/efeitos adversos , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridinas/farmacologia , Piridinas/farmacocinética
5.
In Vivo ; 38(3): 1127-1132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688656

RESUMO

BACKGROUND/AIM: Patients with pneumonia after prolonged neutropenia are at increased risk for acute respiratory distress syndrome (ARDS). The key molecule of endothelial barrier breakdown in sepsis is lipopolysaccharide (LPS), which is a component of the outer membrane of gram-negative bacterial cell walls. Maintaining increased cyclic adenosine monophosphate (cAMP) levels in endothelial cells is effective in preventing endothelial dysfunction and microvascular permeability. The aim of this study was to elucidate whether roflumilast, a phosphodiesterase-4 (PDE-4) inhibitor, is effective in LPS-induced acute lung injury (ALI) during neutropenia recovery in a murine model. MATERIALS AND METHODS: To induce neutropenia, all mice were administered intraperitoneal cyclophosphamide. On day 2 after neutropenia, mice were administered LPS by intra-tracheal instillation. In the prevention group, roflumilast was given orally on day 0, when neutropenia was induced. In the treatment group, roflumilast was administered orally 1 hour after LPS injection. RESULTS: Roflumilast attenuated histopathological changes associated with LPS-induced lung injury. The accumulation of neutrophils and the concentrations of inflammatory cytokines IL-1ß, TNF-α, and IL-6 in bronchoalveolar lavage fluids were inhibited effectively by roflumilast. Also, MMP-9 and TGF-ß expression was attenuated in the roflumilast group. CONCLUSION: Roflumilast significantly attenuated LPS-induced ALI during neutropenia recovery.


Assuntos
Lesão Pulmonar Aguda , Aminopiridinas , Benzamidas , Ciclopropanos , Modelos Animais de Doenças , Lipopolissacarídeos , Neutropenia , Inibidores da Fosfodiesterase 4 , Animais , Aminopiridinas/farmacologia , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/efeitos adversos , Camundongos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Neutropenia/tratamento farmacológico , Neutropenia/induzido quimicamente , Inibidores da Fosfodiesterase 4/farmacologia , Citocinas/metabolismo , Masculino , Líquido da Lavagem Broncoalveolar , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo
6.
Eur J Pharmacol ; 967: 176390, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336013

RESUMO

The deletion of a phenylalanine at position 508 (p.Phe508del) in the CFTR anion channel is the most prevalent variant in people with Cystic Fibrosis (CF). This variant impairs folding and stability of the CF transmembrane conductance regulator (CFTR) protein, resulting in its defective trafficking and premature degradation. Over the last years, therapeutic accomplishments have been attained in developing small molecules that partially correct p.Phe508del-CFTR defects; however, the mechanism of action (MoA) of these compounds has only started to be uncovered. In this study, we employed biochemical, fluorescence microscopy, and functional assays to examine the efficacy and properties of PTI-801, a newly developed p.Phe508del-CFTR corrector. To exploit its MoA, we assessed PTI-801 effects in combination with low temperature, genetic revertants of p.Phe508del-CFTR (the in cis p.Val510Asp, p.Gly550Glu, p.Arg1070Trp, and 4RK) and other correctors. Our results demonstrated that PTI-801 rescues p.Phe508del-CFTR processing, PM trafficking, and channel function (upon agonist stimulation) with greater correction effects in combination with ABBV-2222, FDL-169, VX-661, or VX-809, but not with VX-445. Although PTI-801 exhibited no potentiator activity on low temperature- and corrector-rescued p.Phe508del-CFTR, this compound displayed similar behavior to that of VX-445 on genetic revertants. Such evidence associated with the lack of additivity when PTI-801 and VX-445 were combined indicates that they share a common binding site to correct p.Phe508del-CFTR defects. Despite the high efficacy of PTI-801 in combination with ABBV-2222, FDL-169, VX-661, or VX-809, these dual corrector combinations only partially restored p.Phe508del-CFTR conformational stability, as shown by the lower half-life of the mutant protein compared to that of WT-CFTR. In summary, PTI-801 likely shares a common MoA with VX-445 in rescuing p.Phe508del-CFTR, thus being a feasible alternative for the development of novel corrector combinations with greater capacity to rescue mutant CFTR folding and stability.


Assuntos
Benzoatos , Benzopiranos , Regulador de Condutância Transmembrana em Fibrose Cística , Pirazóis , Piridinas , Pirrolidinas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Mutação , Aminofenóis/uso terapêutico
7.
Sci Rep ; 14(1): 289, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168914

RESUMO

Histone deacetylases (HDACs) are involved in tumorigenesis and progression, however, their role in diffuse large B-cell lymphoma (DLBCL) is not well understood. In this study, we examined the expression levels, mutations, and clinical significance of HDACs in DLBCL. Additionally, we investigated the therapeutic potential of Chidamide, a novel HDAC inhibitor, to provide scientific evidence for targeting HDACs in DLBCL patients. We extracted transcriptome data of DLBCLs--including 47 lymph node samples and 337 whole-blood-cell controls--from The Cancer Genome Atlas. Bioinformatic analyses of HDAC expression, mutation, and correlation with the clinical significance of DLBCL patients were performed with the Gene Expression Profiling Interactive Analysis, GENEMANIA, and web-based software including cBioPortal and WebGestalt. To examine the therapeutic effect of Chidamide, DLBCL cell lines (WSU-DLCL-2 and DB cells) were employed. Cell proliferation and apoptosis were analyzed with Cell Counting Kit-8 and flow cytometry assays. The impact of Chidamide treatment was also analyzed by RNA sequencing of treated DB cells. Western blot was used to explore the molecular mechanism of the cytotoxicity of Chidamide on DLBCL cell lines. The expression of some HDACs (HDAC1, 2, 3, 4, 6, 7, 8, and 9) were significantly higher in the lymph node samples of DLBCL than that in whole-blood-cell controls. Moreover, we found that the mutation rate of HDACs was also higher in DLBCL tissues, although the overall survival of DLBCL patients was not associated with HDAC expression. Chidamide was found to have a cytotoxic effect on DLBCL cells in a dose-dependent manner, while transcriptome analysis and western blot revealed that using it for treatment impacted several biological processes, including PI3K/AKT signaling, mTOR signaling, the cell cycle, and apoptosis pathways. Alterations of HDAC genes, including enhanced expression and mutations, are positively related to DLBCL. Targeting HDACs with specific inhibitors such as Chidamide may represent a potential therapeutic approach for DLBCL patients.


Assuntos
Histona Desacetilases , Linfoma Difuso de Grandes Células B , Humanos , Histona Desacetilases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aminopiridinas/farmacologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Proliferação de Células , Linhagem Celular Tumoral , Apoptose/genética
8.
Cell Chem Biol ; 31(2): 284-297.e10, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37848034

RESUMO

Multiple tyrosine kinase inhibitors (TKIs) are often developed for the same indication. However, their relative overall efficacy is frequently incompletely understood and they may harbor unrecognized targets that cooperate with the intended target. We compared several ROS1 TKIs for inhibition of ROS1-fusion-positive lung cancer cell viability, ROS1 autophosphorylation and kinase activity, which indicated disproportionately higher cellular potency of one TKI, lorlatinib. Quantitative chemical and phosphoproteomics across four ROS1 TKIs and differential network analysis revealed that lorlatinib uniquely impacted focal adhesion signaling. Functional validation using pharmacological probes, RNA interference, and CRISPR-Cas9 knockout uncovered a polypharmacology mechanism of lorlatinib by dual targeting ROS1 and PYK2, which form a multiprotein complex with SRC. Rational multi-targeting of this complex by combining lorlatinib with SRC inhibitors exhibited pronounced synergy. Taken together, we show that systems pharmacology-based differential network analysis can dissect mixed canonical/non-canonical polypharmacology mechanisms across multiple TKIs enabling the design of rational drug combinations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lactamas , Neoplasias Pulmonares , Proteínas Tirosina Quinases , Pirazóis , Humanos , Aminopiridinas/farmacologia , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinase 2 de Adesão Focal/antagonistas & inibidores , Lactamas Macrocíclicas , Neoplasias Pulmonares/tratamento farmacológico , Polifarmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas
9.
Clin Cancer Res ; 30(2): 420-435, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37611074

RESUMO

PURPOSE: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS: We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS: Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.


Assuntos
Neoplasias Encefálicas , Receptor de Morte Celular Programada 1 , Humanos , Camundongos , Animais , Neoplasias Encefálicas/patologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Linfócitos T CD8-Positivos , Microambiente Tumoral , Quinase 4 Dependente de Ciclina/metabolismo
10.
Clin Cancer Res ; 30(4): 703-718, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-37695642

RESUMO

PURPOSE: We conducted research on CDK4/6 inhibitors (CDK4/6i) simultaneously in the preclinical and clinical spaces to gain a deeper understanding of how senescence influences tumor growth in humans. PATIENTS AND METHODS: We coordinated a first-in-kind phase II clinical trial of the CDK4/6i abemaciclib for patients with progressive dedifferentiated liposarcoma (DDLS) with cellular studies interrogating the molecular basis of geroconversion. RESULTS: Thirty patients with progressing DDLS enrolled and were treated with 200 mg of abemaciclib twice daily. The median progression-free survival was 33 weeks at the time of the data lock, with 23 of 30 progression-free at 12 weeks (76.7%, two-sided 95% CI, 57.7%-90.1%). No new safety signals were identified. Concurrent preclinical work in liposarcoma cell lines identified ANGPTL4 as a necessary late regulator of geroconversion, the pathway from reversible cell-cycle exit to a stably arrested inflammation-provoking senescent cell. Using this insight, we were able to identify patients in which abemaciclib induced tumor cell senescence. Senescence correlated with increased leukocyte infiltration, primarily CD4-positive cells, within a month of therapy. However, those individuals with both senescence and increased TILs were also more likely to acquire resistance later in therapy. These suggest that combining senolytics with abemaciclib in a subset of patients may improve the duration of response. CONCLUSIONS: Abemaciclib was well tolerated and showed promising activity in DDLS. The discovery of ANGPTL4 as a late regulator of geroconversion helped to define how CDK4/6i-induced cellular senescence modulates the immune tumor microenvironment and contributes to both positive and negative clinical outcomes. See related commentary by Weiss et al., p. 649.


Assuntos
Aminopiridinas , Lipossarcoma , Humanos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Lipossarcoma/tratamento farmacológico , Lipossarcoma/patologia , Senescência Celular , Quinase 4 Dependente de Ciclina , Microambiente Tumoral
11.
Pharmacol Ther ; 253: 108565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052308

RESUMO

Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.


Assuntos
Glioblastoma , Microglia , Humanos , Aminopiridinas/farmacologia , Pirróis/metabolismo , Pirróis/farmacologia , Microambiente Tumoral
12.
ChemMedChem ; 19(4): e202300391, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38105411

RESUMO

Cystic fibrosis is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In the search of novel series of CFTR modulators, a library of mono and diacyl thioureas were prepared by sequential synthesis. When tested alone, the obtained compounds 5 and 6 poorly affected F508del-CFTR conductance but, in combination with Lumacaftor, selected derivatives showed the ability to increase the activity of the approved modulator. Analogue 6 i displayed the most marked enhancing effect and acylthioureas 6 d and 6 f were also able to improve efficacy of Lumacaftor. All compounds proved to be non-cytotoxic against different cancer cell lines. Good pharmacokinetic properties were predicted for derivatives 5 and 6, thus supporting the value of these compounds for the development of novel modulators potentially useful for cystic fibrosis.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Mutação
13.
Comput Biol Med ; 169: 107815, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128254

RESUMO

Anaplastic lymphoma kinase (ALK) is implicated in the genesis of multiple malignant tumors. Lorlatinib stands out as the most advanced and effective inhibitor currently used in the clinic for the treatment of ALK-positive non-small cell lung cancer. However, resistance to lorlatinib has inevitably manifested over time, with double/triple mutations of G1202, L1196, L1198, C1156 and I1171 frequently observed in clinical practice, and tumors regrow within a short time after treatment with lorlatinib. Therefore, elucidating the mechanism of resistance to lorlatinib is paramount in paving the way for innovative therapeutic strategies and the development of next-generation drugs. In this study, we leveraged multiple computational methodologies to delve into the resistance mechanisms of three specific double mutations of ALKG1202R/L1196M, ALKG1202R/L1198F and ALKI1171N/L1198F to lorlatinib. We analyzed these mechanisms through qualitative (PCA, DCCM) and quantitative (MM/GBSA, US) kinetic analyses. The qualitative analysis shows that these mutations exert minimal perturbations on the conformational dynamics of the structural domains of ALK. The energetic and structural assessments show that the van der Waals interactions, formed by the conserved residue Leu1256 within the ATP-binding site and the residues Glu1197 and Met1199 in the hinge domain with lorlatinib, play integral roles in the occurrence of drug resistance. Furthermore, the US simulation results elucidate that the pathways through which lorlatinib dissociates vary across mutant systems, and the distinct environments during the dissociation process culminate in diverse resistance mechanisms. Collectively, these insights provide important clues for the design of novel inhibitors to combat resistance.


Assuntos
Aminopiridinas , Carcinoma Pulmonar de Células não Pequenas , Lactamas , Neoplasias Pulmonares , Pirazóis , Humanos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Resistencia a Medicamentos Antineoplásicos , Lactamas/farmacologia , Lactamas/uso terapêutico , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico
14.
Anticancer Res ; 43(12): 5283-5298, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030174

RESUMO

Breast cancer (BC) is a common malignancy in women, with hormone receptor (HR)-positive subtype responsible for approximately 70% of cases. Currently, patients with metastatic HR-positive BC rely on endocrine therapy and cyclin-dependent kinase (CDK)-4/6 inhibitors for treatment. Currently, approved CDK4/6 inhibitors include palbociclib, ribociclib, and abemaciclib. However, clinical evidence of CDK-4/6 inhibitor resistance is emerging, suggesting that the gap in the knowledge of its resistance mechanism requires further investigation. This review discusses the mechanisms of CDK4/6 inhibitor resistance in BC, including both intrinsic and extrinsic mechanisms. We also discuss possible alternative strategies to overcome CDK4/6 inhibitor resistance in future clinical applications.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/uso terapêutico , Aminopiridinas/farmacologia , Proteínas Inibidoras de Quinase Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina
15.
J Neuroinflammation ; 20(1): 242, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865779

RESUMO

Microglia, the primary immune cells of the central nervous system (CNS), are derived from the yolk sac and populate the brain during development. Once microglia migrate to the CNS, they are self-renewing and require CSF1R signaling for their maintenance. Pexidartinib (PLX3397, PLX), a small molecule inhibitor of the CSF1R, has been shown to effectively deplete microglia since microglial maintenance is CSF1R-dependent. There have, however, been several conflicting reports that have shown the potential off-target effects of PLX on peripheral immune cells particularly those of lymphoid origin. Given this controversy in the use of the PLX family of drugs, it has become important to ascertain to what extent PLX affects the peripheral immune profile in lymphoid (spleen, and bone marrow) and non-lymphoid (kidney, lungs, and heart) organs. PLX3397 chow treatment at 660 mg/kg for 7 days significantly reduced CD45+ macrophages, CX3CR1-GFP cells, CD11b+CD45intermediate cells, and P2RY12 expression in the brain. However, there were minimal effects on peripheral immune cells from both lymphoid and non-lymphoid organs except in the heart where there was a significant decrease in CD3+ cells, inflammatory and patrolling monocytes, and CD11b+Ly6G+ neutrophils. We then stimulated the immune system with 1 mg/kg of LPS which resulted in a significant reduction in the number of innate immune cells. In this context, PLX did not alter the cytokine profile in the serum and the brain of naïve mice but did so in the LPS-stimulated group resulting in a significant reduction in TNFα, IL-1α, IFN-γ and IL-1ß. Furthermore, PLX did not alter locomotor activity in the open field test suggesting that microglia do not contribute to LPS-induced sickness behavior. Our results provide an assessment of immune cell populations with PLX3397 treatment on brain, lymphoid and non-lymphoid organs without and during LPS treatment that can serve as a resource for understanding consequences of such approaches.


Assuntos
Lipopolissacarídeos , Microglia , Camundongos , Animais , Microglia/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Macrófagos , Aminopiridinas/farmacologia , Receptores de Fator Estimulador de Colônias/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
16.
J Antimicrob Chemother ; 78(11): 2645-2652, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37681450

RESUMO

OBJECTIVES: Fosmanogepix (APX001), a first-in-class, intravenous (IV) and oral (PO) antifungal prodrug, is being developed to treat invasive fungal diseases (IFDs). Manogepix (APX001A; active moiety) targets fungal glycosylphosphatidylinositol-anchored cell wall transfer protein 1, inhibiting cell wall synthesis causing loss of viability. This open-label, multicentre, Phase 1b study in patients with AML and neutropenia (absolute neutrophil count <500 cells/µL; >10 days) undergoing chemotherapy aimed to assess tolerability, safety and pharmacokinetics (PK) of IV and PO fosmanogepix. METHODS: Of 21 adult AML patients undergoing remission induction chemotherapy, 10 received IV fosmanogepix (600 mg; q24h) and 11 received oral fosmanogepix (500 mg; q24h) over 14 days, with a 28 day follow-up. Patients also received remission induction chemotherapy [sequential high-dose cytarabine and mitoxantrone (S-HAM) or 7 + 3 regimen] for AML and IFD prophylaxis (posaconazole). A two-compartmental PK model from previous studies in healthy volunteers was fitted to manogepix plasma data. RESULTS: Of 26 fosmanogepix-related adverse events (AEs; IV: 14; PO: 12) in 9 (42.9%) patients [IV: 5 (50%); PO: 4 (36.4%)], none were serious or resulted in fosmanogepix discontinuation. Most frequently occurring fosmanogepix-related AEs were Grade 1/2 nausea [four events in three patients (14.3%)]; vomiting, ALT increase, and delirium [two events; two patients (9.5%) each]. One patient experienced fosmanogepix-related Grade 3 hypertension. Dose-corrected geometric mean ratio of AUC (PO-to-IV) was 95%. Elimination half-lives (∼2 days) were consistent with prior studies in healthy volunteers. CONCLUSIONS: Fosmanogepix was safe and well tolerated in AML patients with neutropenia receiving remission induction chemotherapy. Safety and PK profiles were comparable to healthy volunteers.


Assuntos
Leucemia Mieloide Aguda , Neutropenia , Adulto , Humanos , Antifúngicos/efeitos adversos , Antifúngicos/farmacocinética , Aminopiridinas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Neutropenia/induzido quimicamente
17.
Leuk Lymphoma ; 64(11): 1733-1741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37462435

RESUMO

Advances in the treatment of acute myeloid leukemia (AML) over the last 40 years have been limited. With an improved understanding of the pathophysiology of the disease, the advent of new treatment options has enriched the armamentarium of the physician to combat the disease. Mutations of the isocitrate dehydrogenase (IDHs) genes are common in AML and occur in 20-30% of cases. These mutations lead to DNA hypermethylation, aberrant gene expression, cell proliferation, and abnormal differentiation. Targeting mutant IDH, either as monotherapy or in combination with hypomethylating agents (HMAs) or BCL-2 inhibitors, has opened new avenues of therapy for these patients.This review will outline the function of IDHs and focus on the biological effects of IDH2 mutations in AML, their prognosis and treatment options.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Aminopiridinas/farmacologia , Antineoplásicos/uso terapêutico , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Triazinas/efeitos adversos
18.
BMC Neurosci ; 24(1): 39, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525115

RESUMO

BACKGROUND: Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation. RESULTS: In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1ß (IL-1ß), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10-6 cm/s) and moderate (3.72-7.18 × 10-6 cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2-2.3 h and terminal half-lives of 7-20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively. CONCLUSIONS: These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases.


Assuntos
Inibidores da Fosfodiesterase 4 , Camundongos , Animais , Inibidores da Fosfodiesterase 4/farmacologia , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa , Aminopiridinas/farmacologia , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico
19.
Biochemistry ; 62(16): 2503-2515, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437308

RESUMO

Cystic fibrosis (CF) is a recessive genetic disease that is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The recent development of a class of drugs called "correctors", which repair the structure and function of mutant CFTR, has greatly enhanced the life expectancy of CF patients. These correctors target the most common disease causing CFTR mutant F508del and are exemplified by the FDA-approved VX-809. While one binding site of VX-809 to CFTR was recently elucidated by cryo-electron microscopy, four additional binding sites have been proposed in the literature and it has been theorized that VX-809 and structurally similar correctors may engage multiple CFTR binding sites. To explore these five binding sites, ensemble docking was performed on wild-type CFTR and the F508del mutant using a large library of structurally similar corrector drugs, including VX-809 (lumacaftor), VX-661 (tezacaftor), ABBV-2222 (galicaftor), and a host of other structurally related molecules. For wild-type CFTR, we find that only one site, located in membrane spanning domain 1 (MSD1), binds favorably to our ligand library. While this MSD1 site also binds our ligand library for F508del-CFTR, the F508del mutation also opens a binding site in nucleotide binding domain 1 (NBD1), which enables strong binding of our ligand library to this site. This NBD1 site in F508del-CFTR exhibits the strongest overall binding affinity for our library of corrector drugs. This data may serve to better understand the structural changes induced by mutation of CFTR and how correctors bind to the protein. Additionally, it may aid in the design of new, more effective CFTR corrector drugs.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Microscopia Crioeletrônica , Ligantes , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Benzodioxóis/farmacologia , Aminopiridinas/farmacologia , Sítios de Ligação , Mutação
20.
Expert Rev Pharmacoecon Outcomes Res ; 23(9): 1041-1048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459247

RESUMO

BACKGROUND: This real-world analysis evaluated drug utilization focusing on wastage and healthcare costs for treatment of patients with advanced breast cancer (aBC) hormone receptor-positive (HR+)/human epidermal growth factor receptor-2 negative (HER2-) in Italy. METHODS: A retrospective analysis was conducted on administrative data covering about 13.3 million health-assisted individuals. Across January/2017-June/2021, all patients with HR+/HER2-aBC were identified by ≥ 1 prescription for cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i). Cost analysis was performed and updated referring to the prices of November 2021. RESULTS: Overall, 3,647 HR+/HER2-aBC patients were included (2,627 palbociclib treated, 729 ribociclib treated, and 291 abemaciclib treated). After 12 months of follow-up, 35% of palbociclib patients had a dose reduction (on average 8.9 wasted pills/patient), 44.7% of abemaciclib patients had a dose reduction (on average 6.7 wasted pills/patient), 22.1% of ribociclib patients had a dose reduction (no wasted pills). Therapy wastage added up to 528,716€ for palbociclib-treated patients (524€/patient) and 5,738€ in abemaciclib-treated patients (151€/patient). No wastage was attributed to ribociclib. CONCLUSIONS: Dose reduction was associated with drug wastage in palbociclib and abemaciclib-treated patients, but not in ribociclib-treated ones. These findings might be helpful to policy decision-makers who, for healthcare strategies implementation, among several variables should consider the possible restraining of drug wastage.


Assuntos
Benzimidazóis , Neoplasias da Mama , Purinas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Estudos Retrospectivos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA